The use of simple models in the teaching
of the essentials of masonry arch behaviour

Traditional masonry is today an unusual material, it is
alien to us at the beginning to the 21st. century. The
usual assumptions for structural materials: homo-
geneity, isotropy, elastic constants (Young’s modulus,
Poisson’s coefficient), etc., do not apply or are irrele-
vant in respect to masonry.

Most important, though masonry presents a good
strength in compression, is very weak to tension; its
behaviour is ‘unilateral’. This fact has paramount
importance in masonry behaviour. Besides, real
masonry structures are cracked. A different approach
is needed and it was used indeed when this type of
structures were designed during the 18th. and 19th.
centuries. Since the 1960's Professor Heyman has
rigorously introduced the theory of masonry struc-
tures within the frame of Limit Analysis, and has
clarified many aspects of the analysis of masonry
architecture.

To teach a new theory (in fact a forgotten one)
presents serious difficulties. Not the least is that the
listeners (students, practicing architects or engineers,
even professors...) must ‘forget’ the usual frame of
reference (elastic analysis, framed or trussed struc-
tures, etc..) and contemplate, as did for example the
gothic masters, a masonry building as a “heap of
stones” in equilibrium under its own weight. But, one
can add to his or her knowledge, but not subtract to
it. In fact, we must reconcile the intuition of the old
master builders with the teachings of modern struc-
tural theory.

The theory can be studied but, how to teach the
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intuition, this feeling of the behaviour which has a
fundamental importance in structural analysis and
design? After more than fifteen years of teaching
masonry structural behaviour I have found the use of
physical models of extraordinary help.

I do not mean the complicated models of labora-
tory, made by skilled workmen, but very simple mod-
els that the students may replicate at home for exper-
iment, study and reflection. I use normally only two
types of models.

The first is Hooke’s hanging chain. The second is
a ‘plane’ block (voussoir) model made of thick card-
board. It is a personal invention, an idea which
occurred to me when, at the beginning of my studies
of arch behavijour, I was struggling with three dimen-
sional models. It applies to arches or masonry struc-
tures of any kind as far as its thickness in one direc-
tion could be considered uniform: barrel vaults, but
also buttresses or flying buttresses, double arches,
etc.

The paper will present the use of this two basic
models: 1) for the teaching and appreciation of the
fundamental assumptions; 2) to assure a better under-
standing of the Fundamental Theorems of Limit
Analysis applied to masonry structures; 3) to study
and understand the basic crack configurations of
masonry arches and vaults.

But to appreciate the use of models, a brief sum-
mary of the essentials of masonry structural theory
should be given beforehand (for an excellent exposi-
tion see Heyman 1995).
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THE THEORY OF MASONRY STRUCTURES

The theory of structures uses only three types of
equations: equilibrium, material and compatibility.
The way these equations are managed depend on the
type of structure and material. The conventional the-
ory of structures was developed during the XIXth
century to cope with the new materials and the new
types of structures invented: frame or trussed struc-
tures made of iron, steel or reinforced concrete. Of
the three fundamental structural criteria (strength,
stiffness and stability), strength was considered to
govern the design. The approach was ‘elastic’ follow-
ing the ideas of Navier (Heyman 1998). This
approach is not adequate to understand the behaviour
of masonry structures. In fact, a different theory
developed before, independently, for masonry arches
and vaults during the XVIIIth and XI1Xth centuries.
This theory was swept away by the elastic approach.
‘Navier’s straitjacket’ conditioned structural thinking
until the advent of plastic theory. However, the old
theory was basically correct and it is a fact that was
used successfully during two centuries. The more
general frame of plastic theory permits to incorporate
the old masonry theory within its frame.

The ‘Aold™ theory became ‘new’ and the elastic
approach (maybe disguised behind a complicated
FEM program) should considered an outdated
approach.

The material masonry

A masonry building is a heap of stones bond togeth-
er in a certain way, with or without mortar, to produce
a certain geometrical form. The adherence provided
by the mortar, if it exists, is negligible and as a result
the ‘material’ masonry (in fact a composite material)
must work in compression. The form is maintained
due to the friction forces generated between the
stones by self-weight, and, as the friction coefficient
is very high, sliding does not occur. Finally, stress
levels are quite low and there is no need to make
strength calculations (masonry may be assumed to
have an infinite strength).

These observations form the basis of the behaviour of
masonry. Any master mason would have accepted
them as obvious. They formed the point of departure
of the calculation of masonry arches and vaults dur-
ing the XVIIth and XIXth centuries. Professor

Heyman used them as the ‘principles of limit analy-
sis of masonry structures’.

Equilibrium: lines of thrust

The condition that the masonry must work in com-
pression imposes a severe geometrical limitation: the
internal forces must be transmitted within the mason-
ry. In every section the point of application of the
stress resultant must lie within the lines (or surfaces)
of extrados and intrados. The locus of these points
forms a curve, the line of thrust. In a masonry struc-
ture the lines of thrust must lie wholly within the
masonry. In fact. the line of thrust is an abstract con
cept (as, for example, the centre of gravity); it is only
a way of representing the equilibrium equations. The
drawing of the thrust line permits to check that the
essential property of the material, working in com
pression, is respected. In a buttress subject to a cer-
tain external thrust there is only one line of thrust and
the problem is statically determined. In an arch, the
two set of equations (equilibrium and material) are
not enough to determine the position of the line: there
are, in general, an infinite number of lines of thrust in
equilibrium with the internal forces within the
masonry.

Cracks and hinges

The material is supposed to have infinite strength and
the sliding failure is impossible. In these conditions
when the thrust (the compressive stress resultant)
touches the limit of the masonry a *hinge’ forms. In 4
real arch this hinge is seen in the form of a ‘crack’
the joint opens and the contact must be, geometrical
ly, in one point (in fact not in a mathematical poini
but in an ‘engineering’ point of small finite dimen
sion). The possibility of cracking is a fundamental
property of masonry. It permits, for example, that an
arch may adapt itself to any small movement of ifs
abutments. The abutments of the arch on the figure
have given way slightly; the arch cracks in three
points, and the resultant ‘three hinged’ arch is a per
fectly stable structure.

The~position of the line of thrust is now deter
mined. But any new movement will change the posi
tion of the line of thrust, resulting in new equilibrium
conditions (the thrust of the arch will change) and
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new pattern of cracks (always conducing to a isosta-
tical state). In a real arch these kind of movements are
unforeseeable and, essentially, unknowable. Small
settlements of the soil, changes of temperature, an
impact load, etc., will conduce to small movements
of the abutments. It is impossible to know the ‘actu-
al” state of the arch nor to predict the possible
changes in cracking. But cracks are not dangerous;
on the contrary, the possibility of cracking is precise-
ly which gives *plasticity’ to masonry structures.

Collapse of arches and the Fundamental
Theorems of Limit Analysis

A masonry arch built with a material of infinite
strength can collapse, and this may seem strange to a
modern architect or engineer. In fact, when the load
distribution produces an equilibrium state with a suf-
licient number of hinges which form a mechanism of
collapse, the structure will fail. The collapse does not
involve an strength failure, but an stability failure. It
is the forming of a sufficient number of hinges which
results in the collapse. This form of collapse was first
demonstrated at the beginning of XVIIth century but,
of course it was known by the old master builders. An
arch collapses in the same way as an steel frame,
forming hinges. The Fundamental Theorems of
Plastic or Limit Analysis can, then, be applied to
masonry structures. This fundamental discovery is
due to Heyman (1966).

The Safe Theorem and the

approach’

‘Equilibrium

The most important of the Fundamentals Theorem is
the Safe Theorem: if it is possible to find a distribu-
tion of internal forces in equilibrium with the loads,
which does not violate the yield condition of the
material, then, the structure is safe (it will not col-
lapse). The main point is that this distribution of
internal forces need not be the ‘real’ or the Aactual@,
it only need to be possible. If it exists, the structure,
before collapse, will find it and remain safe. The Safe
Theorem ha a corollary of paramount importance: it
is possible to work only with two of the structural
equations, equilibrium and material. It leads to what
professor Heyman calls the approach of equilibrium,
and approach which cuts the *Gordian knot’ present-
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ed by the question of what is the actual state of the
structure. It is impossible to know the ‘actual’ state,
because of its intrinsically ephemeral character, but it
is possible to ascertain the safety of the an structure
without making non-verifiable assertions (about its
boundary conditions, etc.).

The task of the analyst is not to find the actual
equilibrium state, but to find reasonable states of
equilibrium for the structure under study. In fact, this
has been the approach of all the great architects and
engineers. It was implicit in the “geometrical design”
of the old master builders (Huerta 2004). It was
explicit in the design work of Maillart, Torroja,
Nervi, Candela or Gaudi, to cite only a few great
engineers and architects.

In masonry arches the application of the equilib-
rium approach is straightforward: a distribution of
internal forces in equilibrium is represented by a cer-
tain line of thrust, and this line must lie within the
masonry to account for the properties of the material.
An arch is safe if we can draw a line of thrust inside.
For self-weight this leads to a geometrical statement:
the arch must have a thickness which permits this, it
must have, then, a certain geometrical form and this
form is independent of size.

The safety of masonry arches

The safety is a matter of geometry but, how to meas-
ure it? Heyman (1969) proposed a geometrical safety
coefficient resulting of the comparison of the actual
geometry of the arch with the geometry of the limit
arch, an arch-of the same profile as the original, but
which has the minimum thickness to contain a line of
thrust. The limit arch is in a mathematical, unstable,
equilibrium and will collapse. It represents the start-
ing point for the designing of a safe, thicker, arch.
The geometrical safety coefficient represents the
relationship between the thickness of the actual arch
with that of the corresponding limit arch. Its concrete
value is an empirical matter, but it appears that a
value of 2 is convenient in most cases.

To obtain the exact value of the thickness of a
limit arch is a complicated mathematical exercise
and, therefore, to ascertain the exact value of the geo-
metrical safetytoefficient may require long calcula-
tions. However, to establish a lower limit is very
casy. Suppose we want to check that the geometrical
coefficient is at least 2 for a certain arch. For this, it
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is only necessary to be able to draw a line of thrust
within the middle half of the arch. The same proce-
dure will be used if the analyst decide to check for a
coefficient of three: this time the problem is simply to
draw a line of thrust within the middle-third. In gen-
eral, historical arches are very safe and it is not diffi-
cult to draw these lines.

Sometimes, the exact value must be calculated
(for example, to know what is the limit load which
can cross a bridge), but in most cases the method sug-
gested functions pretty well (and it was used, without
knowing the Fundamental Theorems, in the second
half of the XIXth century).

SIMPLE HANGING MODELS
Hooke’s idea
Robert Hooke (1675) was the first to give a correct

analysis of the behaviour of masonry arches. He
solved the problem making an analogy of a well

Figure |
Hooke’s analysis of the arch (Heyman 1995)

known structure, the hanging chain or cord. ‘As
hangs the flexible line, so but inverted will stand the
rigid arch’ (Fig. 1 (a)). What is tension in the cable
will be compression in the arch and the absolute
value of the internal forces is identical.

Hooke was not able to deduce the equation of the
catenary, but the analysis was not the mathematical
exercise but the realization of the identical behaviour
of two apparently different structures, as has been
pointed by professor Heyman. A few years later
another English mathematician, Gregory (1697),
completed the assertion in a crucial way: the catenary
is the true form of an arch and if arches of other
forms stand it is because ‘in its thickness some cate-
naria is included’ (Fig. 1(b)).

It is much simpler to think in terms of hanging cables
than in terms of arches. Hanging models were used
also at the end of the X VIIIth century to demonstrale
the behaviour of masonry bridges, for example by
Thomas Young (1807).

Gaudi made extensive use of hanging models for the
design of arches and vaults (Huerta 2003). (For a

(b)

—
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review of the use of hanging models in arch and vault
design, see Graefe 1986).

Description and functioning of the model

The material is a simple chain that can be acquired in
any hardware store. The hanging chain takes the form
of catenary and this is very nearly the form of the line
of thrust of an arch made of equal voussoirs (the best
mathematical study of lines of thrust in Milankovitch
1907).

The intention is not to make an exact calculation
(with the values of the thrusts etc.), nor it is to obtain
certain forms in the design (as Gaudi did), it is to
have a model to demonstrate some of the main points
of the structural theory cited before, to “think with the
model’. To relate the hanging chain with an arch of
finite thickness we will draw the arch in a cardboard.
The arch must be inverted to show the relationship
with the chain.

‘PLANE’ BLOCK (VOUSSOIR) MODELS
Block models of arches

Models of arches and vaults have been made since
antiquity. It was a common practice to learn stonecut-
ting, to make scale models with the voussoirs cut in
soft stone or gypsum. Leonardo (ca. 1500) made
some attempts to study arch behaviour with the help
of models, without arriving to a theory. Danyzy
(1732), Fig. 2, made the first experiments destined to
demonstrate the correct form of collapse of arches,
employing small models of arches made of gypsum
(an excellent outline of the collapse theory of arches
and the use of models in Heyman 1982). However
the use models does not guarantee the arrival to a
good theory, and there are many examples in the his-
tory of arch theory. To cite but one example, Bland
(1839) made many models of arches and butiresses
without understanding the true principles which
explained the observed behaviour.

The problem with spatial block models is that the
joints must be very precisely cut; if this is not so, the
blocks tend to press in only certain points and the
resulting behaviour (many times with slide-rotations
of blocks ete.) deviates greatly from that of a real
arch, where the process of construction preclude the

occurrence of such phenomena. A successful spatial
voussoir arch model can be constructed only by an
experienced workman in possession of adequate
tools. On the contrary, the ‘plane’ block model pro-
posed may be made by anyone with a moderate skill
in handiworks. The main utility of block models is to
observe the different patterns of cracking in arches.
However, they may be used to study, also, complex
phenomena.

Description and functioning of the model

The arches (maybe with buttresses) are made of
blocks cut from a thick cardboard. A thickness of 1.5
mm is recommended. A thinner cardboard may not be
perfectly plane; if it is thicker it is difficult to cut the
joints perfectly plane. It is better to make the drawing
first on the cardboard and then cut the blocks. It is not
convenient to divide the arch in too many blocks; this
will only complicate the process of mounting and the
interpretation of the observed behaviour. A number
of, say, 10-12 blocks for a whole arch is adequate. Of
course, there is ample space for experimentation;
these recommendations are the fruit of several trials
along the years.

It is needed also a glass with a paper at the back
to contrast the figure of the arch. It is better a plain,
normal, glass; glasses with an anti-reflecting surface
present normally a higher friction. At the base of the
glass a continuous strip of cardboard should be glued.
This is the basement for the arch. Then the glass is
mounted on a lectern. The lectern should be in a posi-
tion with a very low angle, so that the voussoirs do
not slide. Now, the arch can be mounted. Normally it
is not necessary to use a ‘centering’; it is easy to
mount the blocks one after the other, beginning by
both springings and meeting at the keystone. It is not
necessary that the blocks fit perfectly in this phase.
When the arch is closed, the glass is lifted gently and
the lectern is raised to a position with an inclination
of, say, 65°-B70°. Carefully the glass with the arch
on it is placed over the lectern. Now it is possible to
see how the blocks are pressing one against the other.
In this moment corrections on the position of the
blocks may be made to obtain and arch perfectly
‘constructed’. (Fig. 3)

The physical principle involved is evident. The
weight of each block acts vertically. As the block is
supported by the inclined surface of the glass, this
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Figure 2

First experiments on the collapse of arches with small gypsum block models (Danyzy 1732)

force may be resolved into two other forces: one nor-
mal to the surface of the glass and the other contained
within its surface.

When the inclination of the glass is well above
the angle of friction between the cardboard and the
glass, all blocks tend to slide downwards and these
forces are proportional to the gravity forces. The
cardboard arch behaves in exactly the same way as an
spatial arch (or barrel vault) of the same profile. (Of
course, when the movement is not entirely vertical,

some friction forces may arise, but they are very low
and do not affect in general the fundamental behav-
iour.)

It would have been appreciated during the
process of mounting the arch, that any small move-
ment of the abutments or blocks leads to some
‘cracking” the blocks forming some hinges. If the
handling is not correct, occasional sliding may be
observed. Moving the abutments, these cracks may
be closed.
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(d)

Figure 3
The *plane’ block model of cardboard

EXPERIMENTAL DEMONSTRATIONS

In what follows we will make a series of assertions
which can be checked immediately employing the
hanging chain models. Reference will be made to the
figures of the experiments.

Equilibrium

1) The chain represents a certain possible state of
equilibrium for the given loads.

2) There are infinite chains in equilibrium with
the same loads.

3) A variation of the loads results in a change of
the form of the chain.

[Fig. 4 (a) to (c); Fig. 6 (a); Fig.7; Fig. 8 (b).]

Material

4) The masonry must work in compression; this
implies that the chain must be within the arch

5) The use of hanging models provides an automatic
check on this essential property of masonry: it is
impossible that a chain or cable works in compres-

© ®

sion (i.e. the model guarantees that the masonry
never will be in tension).
[Fig. 4(a) to (c): Fig. 7; Fig. 8 (b).]

Equilibrium + material

6) There are still infinite possible chains (states of
equilibrium) within the arch.

7) There are two extreme positions of the chain,
which corresponds to maximum and minimum height
of the chain and, consequently, maximum and mini-
mum thrust,

8) It is not possible to calculate the actual thrust of
the arch, but it is possible to fix the upper and lower
limits to its value.

[Fig. 4 (a) to (c); Fig. 7; Fig. 8 (b).]

Cracks and hinges

9) When the chain touches on of the limits of the
masonry (lines of extrados or intrados) a hinge forms.
The hinge will manifest itself in a real arch in the
form of a crack. The formation of the hinge depends
on the characteristics of the material: infinite com-
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Figure 4
Semicircular arch. Equilibrium. Basic crack patterns

pressive strength, zero tension strength, impossibility
of sliding.
[Figs. 2,4,6,8,9,10]

Response to a movement of the abutments

10) After the decentering, a masonry arch will
thrust against the abutments and they will give way
slightly. The span consequently increases and the
arch must accommodate to the new situation by
forming hinges or cracks: three cracks develop: one
at the keystone and two on the haunches.

11) These cracks determine the position of the
chain/line of thrust which must pass through the
hinges. In the above mentioned case, the chain takes
a position corresponding to the minimum thrust. The
state of the arch is now an isostatic three-hinged arch
and internal efforts may be calculated with only the
equilibrium equations.

REMARK I: Cracking is NOT dangerous; it is
the only way the structure has to cope with an
‘aggression’ of the environment.

REMARK 2: An slight further movement out-
wards will not affect the value of the horizontal com-
ponent of the thrust.

REMARK 3: The cracking is ‘reversible': if the

abutments approach to reach the original position the
crack will close. It is possible to move forwards and
backwards the abutment of the model without conse-
quences.

In bridges and buildings this may occur as a
result of seasonal changes in soil conditions, for
example. [Fig. 4 (d) and (D]

12) When the two abutments approach and the
span is reduced the arch crack again and the hinges
are disposed following the line of maximum horizon-
tal thrust. The two superior hinges are equivalent to
one as they both open upwards (in a real arch one of
them will close).

The arch is again three-hinged and the thrust may
be calculated readily. [Fig. 4 ()]

13) Any other movement of the abutments will
lead to a different cracking. As the base of each abut
ment has three degrees of freedom (two displace
ments and a rotation) the number of possible combi-
nations is quite large. [Fig. 5]

Collapse-of arches

14) The addition of a point load to an stable arch
will distort the form of the line of thrust. For a certain

R R R R RO
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value of the load the line of thrust will be just con-
tained within the arch, touching in four points. The
correspondent four hinges form a mechanism of col-
lapse.

REMARK 4: The collapse depends on the forma-
tion of a sufficient number of hinges. It does not
involve a strength failure (the cardboard blocks pres-
ent no damage or distortion): it is a stability failure.

REMARK 5: It is precisely the same form of col-
lapse of steel frames. The Fundamental theorems
may be ‘translated’ to masonry when the properties
of the material guarantee this form of collapse (infi-
nite compressive strength, zero tension strength,
impossibility of sliding). [Fig. 6]

Safety

I5) The Safe theorem states that an arch with a
possible equilibrium state which respect the material
yield condition (work in compression), i. e., an arch
with a chain inside is safe: it will not collapse.

16) For self weight, the form of the hanging chain

T -al=L/60=ah i{d)

Response of a pointed arch to movements of the supports. Cracking and lines of thrust

depends, for self-weight, on the form of the arch. The
safety depends on geometry and not in size.

REMARK 6: Safe Theorem. A safe arch, an arch
in which it has been possible to draw a line of thrust,
will not collapse, for whatever movements we induce
in the abutments, provided that these movements are
‘small’, i. e., that the equilibrium equations have not
changed, i. e., the overall geometry of the arch is not
distorted.

REMARK 7: The model may be considered as an
empirical proof of the Safe Theorem, as it is impossi-
ble to produce the collapse of an arch by producing
any set of small movements.

REMARK 8: Though the Safe Theorem applies
only to small movements, the model shows that a
voussoir arch may withstand very large movements,
unacceptable for example for an steel or concrete
modern structure. (Evidence of such large move-
ments can be found in places where the soil suffers
great movements, as is the case in México DF where
it is easy to find masonry churches with enormous
deformations which have stood for several centuries.)
[Fig. 4 (a) to (c); Fig. 5; Fig. 7; Fig. 8 (b).]
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Figure 6
Collapse of a semicircular arch under a point load

Limit arches

17) as the form of the chain and that of the arch are
different, if we shrink the thickness of the arch we
reach a point where there is only one possible chain
within the arch. This is the limir arch.

18) for an arch of uniform thickness with a certain
profile, the limit arch is characterized by a relation-
ship between the span and the thickness. For a semi-
circular arch &/t * 18, nearly; for the pointed arch in
figure s/t * 22. [Fig. 7 (b) and (d)]

Geometrical coefficient of safety

19) The limit arch provides essential information for
the assessment of the safety of arch of the same form.
A geometrical coefficient of safety (Heyman) may be
defined: the relationship between the thickness of the
real arch to that of the corresponding limit arch.
[Fig. 7 |

Upper limit to the geometrical coefficient of safety

20) To demonstrate that the geometrical coefficient is
at least equal and in general greater than a certain
value s# it is sufficient to be able to draw a line of
thrust within an arch of the same form with a thick-
ness t/n, being t the thickness of the real arch. For
example, for a coefficient of 2, a line must line with-
in the middle half of the section of the arch; for a
coefficient of 3 a line must lie within the middle
third. [Fig. 7 (a) and (c¢), for a coefficient of nearly 2]

COMPLEX PROBLEMS

So far the two type of models have been used to make
evident th

e most important theorems and corollaries of the the-
ory of the masonry arch. The same models may serve
to study complex problems.

When the analyst is faced with a new type of struc-
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Figure 7
Limit arches and the geometrical safety coefficient

ture, it will be very useful to use the models to exam-
ine the problem qualitatively before doing any calcu-
lations. In fact, the models may well indicate an
unexpected behaviour. In what follows some exam-
ples will be shown.

Flying buttress: sliding at the head

A flying buttress is not half an arch, but an arch with
the supports at different height, When the buttress

(b)

(d)

where the lower part abuts gives way slightly, the fly-
ing buttress must crack but, in what way? Consider
the problem in relation with idealized buttress of Fig.
8 (a). After looking at Fig. 4 one may expect a simi-
lar crack pattern. In fact, the hanging model of Fig. 8
(b) makes evident that this is not the case. Three
hinges should form following the pattern of Fig. 8
(d). However, again unexpectedly, the first trial with
the model gave the pattern of Fig. 8 (¢): two hinges
and sliding downwards at the head. Looking again at
the form of the line of thrust (Fig 8 (b)) it is clear that
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Figure 8
Study of a flying buttress

the inclination of the thrust with the wall may be out
of the friction cone: the head of the buttress will tend
to slide downwards.

The gothic builders placed there a little column or
other similar device (the matter has been discussed
by Heyman (1966), the best exposition of flying but-
tress behaviour). Evidence of sliding is not difficult
to find (see for example, Smars 2000, 167). To avoid
sliding in Fig. 8 (d) the friction was increased making
small crease in the cardboard on both faces of the
joint.

Double arches

Not infrequently a barrel vault is ‘reinforced” by
arches. Also, some brick bridges are made of succes-
sive rings, built concentrically one after the other.
The model of such constructions may be that in Fig.
9 (a). What is the behaviour of such ‘double’ arches?
Does they~function as a single arch? A simple test
with a model demonstrates that this is not the case.
The two rings tend to slide and hinges form inde-
pendently, Fig. 9 (b). There may be some transmis-
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Figure 9
Behaviour of double arches

sion of load due to friction but it should be small. In
case the model shows the expected pattern of cracks.
This may be verified observing real vaults (Fig. 9
(c)). The matter has been studied with a complex
mathematical algorithm by Melbourne and Gilbert
(1995), The results are the same.

Arch which supports a wall

This is another frequent situation: an arch supports a
wall of ashlar masonry (Fig. 10 (a)). The buttress sys-
tem, as usual, gives way slightly, what is the expect-
ed pattern of cracks? This may difficult to study with

Figure 10
Arch which supports an ashlar wall.

the available engineering software. Again, a simple
cardboard model (this time more time consuming)
will make apparent the main features, Fig. 10 (b):
inclined cracks forms, following the weaker lines of
the bonding. The model may be compared with
existing crack patterns, as in Fig. 10 (¢), where the
‘kink’ in the cornice makes evident the movement.
Cracks on the right and left sides are also evident.
The wall is supported on the arch at the back of Fig.
9 (c).

Collapse of a masonry buttress

Traditionally the buttresses which support the arch or
vault thrusts have been considered monolithic. In
fact, a real buttress is made of separate stones and
some cracking may be expected to occur. The first
study of this pGssibility corresponds to the Spanish
engineer Monasterio, ca. 1800 (Huerta y Foce 2003).
The model demonstrates easily the most common
mode of collapse (Fig. 11 (c)). The mode of Fig. 11
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(b)

Figure 11
Possible modes of collapse of a masonry buttress

Figure 12
Collapse of an arch under constant horizontal acceleration

(b) suggest the convenience to build a pinnacle on
top, a practice followed by gothic builders. Finally,
the mode of Fig. 11 (d) is very unlikely in a real
building. The theoretical aspect has been recently
studied (Ochsendorf, Hernando y Huerta 2004).

Arch subject to a constant horizontal acceleration
(seismic collapse)

Finally, the hanging and block models may be used to
study possible collapse modes under seismic action.
The effect of a constant acceleration may be simulat-
ed simply inclining the model: the collapse mode
may be observed in the model of Fig. 12.

The same pattern has been observed in more precise
experiments made with scale arches. 1 have found
this idea of inclining block models in an article by
Frei Otto (1986).

There is abundant literature on the seismic response
of masonry structures. The laboratory material need-
ed for experiments is quite sophisticated. Again, the
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use of simple models may help to direct more precise
experiments.

CONCLUSIONS

Two sirr?ple types of scale models, Hooke’s hanging
chain and the ‘plane’ block model, may be used to
visualize the main assumptions of the theory of
masonry,

The models may help to add to our experience of
this kind of structures, which nowadays are no longer
built in the western world. Also, the models help to
think about the essentials of the stability of masonry
arches.

‘Playing” with them the student (I mean here a
person who studies, in the University or maybe some
years later as a professional) may check his or her
understanding of the theory.

Finally, an experienced architect or engineer may
find these models useful in order to study new prob-
lems.
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